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Abstract

In this paper, we develop a finite-volume scheme for the KdV equation which conserves both the momentum and
energy. The main ingredient of the method is a numerical device we developed in recent years that enables us to construct
numerical method for a PDE that also simulates its related equations. In the method, numerical approximations to both
the momentum and energy are conservatively computed. The operator splitting approach is adopted in constructing the
method in which the conservation and dispersion parts of the equation are alternatively solved; our numerical device is
applied in solving the conservation part of the equation. The feasibility and stability of the method is discussed, which
involves an important property of the method, the so-called Jensen condition. The truncation error of the method is ana-
lyzed, which shows that the method is second-order accurate. Finally, several numerical examples, including the Zabusky–
Kruskal’s example, are presented to show the good stability property of the method for long-time numerical integration.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the Korteweg–de Vries (KdV) equation
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where e is a constant, possesses an infinite set of conservation laws and the first two of them are Eq. (1.1),
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which describes the conservation of energy. It is commonly believed that it is good for a numerical method
for the KdV equation to simulate as many of these conservation relations as possible; methods preserving
more conservation relations are usually more stable and suitable for long-time integration. However, main-
taining more than one conservation relations is difficult in the practice of numerical simulation. From a
broader point of view of mathematics, the difficulty is that there is generally no enough degrees of freedom
to construct numerical methods for a PDE that also simulates the equations that are derived from the ori-
ginal one.

A lot of numerical methods have been developed for the KdV equation in recent years, ranging from finite
difference methods, finite element methods to spectral methods, see [25,8,16,24,23,3,1,2,20,26,5,6] and the ref-
erences cited therein. Most of them preserve the conservation of momentum and only a few of them preserve
the conservation of both the momentum and energy. We should particularly mention the symplectic and mul-
tisymplectic schemes, see [3,1,2,26,20]. When viewing the KdV equation as a Hamiltonian system, these
schemes preserve the symplectic structure of the system. Therefore, they are proved to be good numerical
methods for long-time integration of the equation. However, symplectic and multisymplectic schemes usually
do not exactly conserve the momentum and energy and thus how closely the momentum and energy are con-
served in computation is then a property of interest for these schemes and is often assessed in numerical exper-
iments, see the references cited above.

In this paper, we develop a finite difference method for the KdV equation which satisfies both the momen-
tum and energy conservation relations. The main ingredient of the method is a device we developed in recent
years that enables us to construct numerical methods that simultaneously simulates a PDE and its related
equations, see [11,4,12–14,21,22]. To explain the idea, we look at the linear advection equation
ut þ ux ¼ 0: ð1:3Þ

This equation possesses infinitively many conservation laws. As a matter of fact, for any smooth function U(u)
the following equation
UðuÞt þ UðuÞx ¼ 0 ð1:4Þ
is also satisfied. Both u and U(u) are then conserved in the sense that
Z 1

�1
uðx; tÞdx ¼

Z 1

�1
uðx; 0Þdx ð1:5Þ
and
 Z 1

�1
Uðuðx; tÞÞdx ¼

Z 1

�1
Uðuðx; 0ÞÞdx: ð1:6Þ
In the following, we are going to construct a conservative numerical scheme that simulates both Eqs. (1.3) and
(1.4) for a given U(u).

Our scheme is of the Godunov type and its numerical solution fun
jg is a cell-average approximation to the

exact solution at time tn
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uðx; tnÞdx: ð1:7Þ
A very special feature of the scheme is that it computes also a cell-average approximation to U(u)
Un
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Uðuðx; tnÞÞdx: ð1:8Þ
Like all the Godunov-type schemes (see [9,10]), the scheme proceeds in the reconstruction, evolution and cell-

averaging steps.
In the reconstruction step, the solution is reconstructed in each cell ðxj�1

2
; xjþ1

2
Þ as a linear function
Rðx; un;UnÞ ¼ un
j þ sn

j ðx� xjÞ; j ¼ . . . ;�1; 0; 1; . . . ; ð1:9Þ



378 Y. Cui, D.-k. Mao / Journal of Computational Physics 227 (2007) 376–399
where sn
j is the slope. Another very special feature of the scheme is that the slope is not computed by interpo-

lating the solution as is done in ordinary finite-volume schemes, but rather by requiring
1
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jþ1
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x
j�1

2

UðRðx; un;U nÞÞdx ¼ U n
j ; ð1:10Þ
that is, the cell-average of U(u) of the reconstructed solution must be equal to the numerical cell-average of
U(u) in the grid cell. Eq. (1.10) is an equation of sn

j , from which we solve out the slope.
The evolution step is to solve the IVP
vt þ vx ¼ 0;

vðx; tnÞ ¼ Rðx; un;UnÞ;

�
tn < t < tnþ1; ð1:11Þ
as that in all the Godunov’s type schemes do and the cell-averaging step is to cell-average v and U(v) to Eq.
(1.11) at t = tn+1 to obtain unþ1

j and U nþ1
j . In practice, we use the integral form of Eqs. (1.3) and (1.4) to com-

pute unþ1
j and U nþ1

j , which results in the following conservative schemes
unþ1
j ¼ un

j � kðf̂ n
jþ1=2 � f̂ n

j�1=2Þ ð1:12Þ
and
U nþ1
j ¼ Un

j � kðbF n
jþ1=2 � bF n

j�1=2Þ; ð1:13Þ
where f̂ n
jþ1=2 and bF n

jþ1=2 are the flux approximations to u and U(u) in Eqs. (1.3) and (1.4), respectively, on the
cell boundaries.

The scheme so constructed maintains the conservation for both u and U(u). We note that our numerical
approximations un

j and U n
j are not related as customarily Uðun

j Þ ¼ Un
j , but rather in a loosen fashion as in

Eqs. (1.8) and (1.10). Actually, the numerical solution in each grid cell can be understood from Eqs. (1.8)
and (1.10) as a piece of linear function whose cell-average is un

j and whose cell-average of U(u) is U n
j . In this

fashion, we gain one degree of freedom in describing the numerical solution, which enables us to maintain the
conservation relations for both u and U(u) in constructing the scheme.

Along this line, schemes maintaining more conservation relations can also be constructed. This can be
accomplished by involving more entities ðU 1Þn; ðU 2Þn; . . . in the numerical scheme, where
ðU iÞnj ’
1

h

Z x
jþ1

2
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j�1

2

Uiðuðx; tnÞÞdx; ð1:14Þ
with Ui(u) being nonlinear functions of u, either convex or not, reconstructing the solution in each cell as
polynomial
Rðx; un; ðU 1Þn; ðU 2Þn; . . .Þ ¼ un
j þ s1ðx� xjÞ þ s2ðx� xjÞ2 þ � � � ; ð1:15Þ
and solving the coefficients s1, s2, . . . from the system of equations
1

h

Z x
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j�1
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U iðRðx; un; ðU 1Þn; ðU 2Þn; . . .ÞÞdx ¼ ðU iÞnj ; i ¼ 1; 2; . . . ; ð1:16Þ
see [21]. For more general evolution PDE’s, the functions Ui’s may also involve the derivatives of u, i.e.
ux,uxx; . . . and Ui’s are not necessary to be conserved.

For continuous solutions to Eq. (1.3), the numerical results computed by this kind of schemes are fantastic.
In Fig. 1, we present two numerical results computed by this kind of schemes with 200 grid cells, which are
cited from [21]. Both are of the Wavepacket problem, see [9]. The result on the left is obtained by a scheme
maintaining u and u2 conserved (second-order accurate) and is at t = 200 and the result on the right is by a
scheme maintaining u, u2 and u3 conserved (third-order accurate) and is at t = 20,000. As to our knowledge,
no scheme up to date has ever got qualified numerical result for this example with the same grid beyond the
time t = 20.
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Fig. 1. The numerical result on the left is obtained by a scheme maintaining two conservation relations (second-order accurate) and is at
t = 200, and the one on the right is obtained by a scheme maintaining three conservation relations (third-order accurate) and is at
t = 20,000.
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The success of our numerical device in the linear advection equation encourages us to apply it to the KdV
equation since the latter also possesses many conservation laws and maintaining them in numerical simulation
is important. We develop a scheme which computes and conserves both the momentum u and energy U(u).
That is, the constructed scheme involves two numerical entities, the numerical momentum un

j and numerical
energy Un

j and both of them are conservatively computed.
To construct the scheme, we adopt the splitting strategy as in [8], i.e. split the Eq. (1.1) into the conservation

part (2.5) and dispersion part (2.6). Our numerical device is applied in solving the conservation part, where the
solution is reconstructed in each grid cell with its momentum cell-average being un

j and its energy cell-average
being U n

j . To solve the dispersion part, we adopt the implicit difference scheme in [8] to compute the momen-
tum cell-averages fun

jg and once they are computed the energy cell-averages fU n
jg are then computed passively

from them. The advantage of using this implicit scheme is that the time step s does not suffer from a prohib-
iting restriction s = O(h3), and the corresponding linear algebra system is still easy to be solved using well
developed numerical methods. Therefore, the only restriction on the time step in our method comes from
the conservation part, which is of s = O(h).

Constructed in such a way, our method is stable in the sense that its energy is nonnegative and L1 bounded
and its momentum is L2 bounded by the L1 norm of its energy, see Theorem 3.2. The method is second-order
accurate away from extremes of solution and is at least first-order accurate near extremes, see Theorem 4.3.

We know that the KdV equation is notorious for its ‘‘marginal’’ stability that is resulted in the balance
between the nonlinear convection and the linear dispersion, see [2]. This ‘‘living at the edge of stability’’
becomes more fragile in the ‘‘convection-dominated’’ cases, in which the linear dispersion is very weak com-
pared to the nonlinear convection; therefore, long-time numerical integrations for these cases are difficult since
they tend to become unstable. A typical case is the so-called Zabusky–Kruskal’s example, see [25], on which
many numerical schemes, including the Zabusky–Kruskal’s scheme, explode in long-time numerical integra-
tions, see [1,18,20,26,5]. We test our method on ‘‘convection-dominated’’ cases, especilally the Zabusky–Krus-
kal’s example and the numerical results are fantastic. The method is very stable and robust in long-time
integrations and the solitions are very smooth with well-preserved shapes of solitons. The numerical simula-
tion for the Zabusky–Kruskal’s example goes up to the time t = 20tR and still does not exhibit any blowup. It
seems to us that the computation can go on for ever.

The organization of the paper is as follows: Section 1 is the introduction. In Section 2, we describe the
numerical method in detail. Section 3 discusses the feasibility and stability of the method, which involves a
very important property of the method, the so-called Jensen condition. Section 4 discusses the accuracy of
the method and proves that the method is essentially second-order accurate. In Section 5, we present several
numerical examples computed with our method, which include the Zabusky–Kruskal’s example [25], to show
its good stability property for long-time numerical integration. Finally, Section 6 is the conclusion.
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2. Description of the method

2.1. Numerical solution

We consider the Cauchy problem for the KdV equation
ut þ
1

2
u2

� �
x

þ euxxx ¼ 0;

uðx; 0Þ ¼ u0ðxÞ;
ð2:1Þ
with a suitable initial function u0(x), where e is a constant which may be very small. As we have mentioned in
the previous section, Eq. (2.1) possesses infinitely many conservation laws and the first two of them are Eq.
(2.1) and
ðu2Þt þ
2

3
u3

� �
x

þ eð2uuxx � ðuxÞ2Þx ¼ 0: ð2:2Þ
Eq. (2.1) is the conservation law for the momentum u and Eq. (2.2) is the conservation law for the energy
U(u) = u2.

For numerical discretization, we consider only uniform grids and use the notations xj ¼ jh; xj�1
2
¼ j� 1

2

� �
h

and tn = ns, with h and s being the spatial and temporal increments, respectively. Our method is of the finite-
volume type (see [9,10]) whose solution is a cell-average approximation to the true solution
un
j ’
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2

uðx; tnÞdx: ð2:3Þ
A very special feature of our method is that it also computes a cell-average approximation to the energy U(u)
of the true solution,
U n
j ’
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Uðuðx; tnÞÞdx ¼ 1

h
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u2ðx; tnÞdx: ð2:4Þ
In this way, the solution to Eq. (2.1) is understood as consisting of two entities, the momentum u and the en-
ergy U(u) = u2 and they are evolved with time by Eqs. (2.1) and (2.2), respectively. Likewise, the numerical
solution also consists of approximations to the two entities, numerical momentum un

j and numerical energy
Un

j , in each grid cell.

2.2. Operator splitting

As in [8], we apply the method of operator splitting to solve Eq. (2.1); i.e. we are going to alternately solve
the conservation part and dispersion part of Eq. (2.1). However, with the above understanding of solution to
Eq. (2.1), the conservation and dispersion parts are defined, respectively, as
ut þ
1

2
u2

� �
x

¼ 0;

ðu2Þt þ
2

3
u3

� �
x

¼ 0;

uðx; 0Þ ¼ u0ðxÞ; ðuðx; 0ÞÞ2 ¼ ðu0ðxÞÞ2;

ð2:5Þ
and
ut þ euxxx ¼ 0;

ðu2Þt þ eð2uuxx � ðuxÞ2Þx ¼ 0;

uðx; 0Þ ¼ u0ðxÞ; ðuðx; 0ÞÞ2 ¼ ðu0ðxÞÞ2:
ð2:6Þ
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Let At be the solution operator associated with the conservation part (2.5); i.e. we write the unique momen-
tum and energy to Eq. (2.5) as
uðx; tÞ
Uðuðx; tÞÞ

� �
¼ At

u0ðxÞ
Uðu0ðxÞÞ

� �
: ð2:7Þ
Similarly, we denote the solution operator associated with the linear dispersion part by Bt. Then we approx-
imate the solution to Eq. (2.1) by the Godunov’s splitting
usðx; nsÞ
U sðuðx; nsÞÞ

� �
¼ ½Bs � As�n

u0ðxÞ
Uðu0ðxÞÞ

� �
ð2:8Þ
for small time step s. Of course, when this approach is implemented, both As and Bs must be replace by
numerical methods.

The above Godunov’s splitting method is in general only first-order accurate formally. In order to obtain
second-order accuracy for the method, we may use Strang’s operator splitting instead. Then we approximate
the solution over time by
usðx; nsÞ
U sðuðx; nsÞÞ

� �
¼ ½As

2
� Bs

2
� Bs

2
� As

2
�n

u0ðxÞ
Uðu0ðxÞÞ

� �
: ð2:9Þ
In the following two subsections we are going to describe, respectively, the numerical schemes approximating
the operators As and Bs.

2.3. Numerical scheme for As

The numerical scheme for the conservation part (2.5) is of the Godunov type ([9,10]); however, different
from ordinary Godunov-type schemes, our scheme involves two conservative entities, the numerical momen-
tum un

j and numerical energy Un
j . The scheme proceeds in reconstruction, evolution and cell-averaging steps in

each time step as the following.
Reconstruction. We use the numerical solution fðun

j ;U
n
j Þg to reconstruct a piecewise linear function

R(x;un,Un), which is of the form
Rðx; un;UnÞ ¼ un
j þ sn

j ðx� xjÞ; xj�1=2 < x < xjþ1=2 ð2:10Þ
in each grid cell ½xj�1
2
; xjþ1

2
�. Obviously, R(x;un,Un) satisfies
1

h

Z x
jþ1

2

x
j�1

2

Rðx; un;U nÞdx ¼ un
j : ð2:11Þ
We require
1

h

Z x
jþ1

2

x
j�1

2

UðRðx; un;UnÞÞdx ¼ Un
j ; ð2:12Þ
i.e. the energy cell-average of the reconstructed solution be equal to the numerical energy in the cell. Eq. (2.12)
is an equation of slope sn

j , from which we solve out sn
j for the reconstruction (2.10).

Evolution. Evolve the equation with the reconstructed solution R(x;un,Un) as the initial function at time tn
vt þ f ðvÞx ¼ 0; �1 < x <1; tn < t 6 tnþ1;

vðx; tnÞ ¼ Rðx; un;U nÞ; �1 < x <1;

�
ð2:13Þ
and obtain the solution v(x,t) over the time interval [tn,tn+1].
Cell-averaging. Cell-average v(x,tn+1) over the jth cell to obtain the numerical momentum unþ1

j at tn+1; i.e.
unþ1
j ¼ 1

h

Z x
jþ1

2

x
j�1

2

vðx; tnþ1Þdx: ð2:14Þ
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In practice, we use the integral form of the first equation in Eq. (2.5) over the cell instead to compute unþ1
j

unþ1
j ¼ un

j � k f̂ n
jþ1

2
� f̂ n

j�1
2

	 

; ð2:15Þ
where k ¼ s
h is the mesh ratio and the numerical momentum flux f̂ n

j�1
2

is defined asZ

f̂ n

j�1
2
¼ 1

s

tnþ1

tn

1

2
v xj�1

2
; t

	 
	 
2

dt: ð2:16Þ
The numerical energy Unþ1
j at tn+1 is computed as
U nþ1
j ¼ Un

j � k bF n
jþ1

2
� bF n

j�1
2

	 

; ð2:17Þ
where the numerical energy flux bF n
j�1

2
is defined as
bF n
j�1

2
¼ 1

s

Z tnþ1

tn

2

3
v xj�1

2
; t

	 
	 
3

dt: ð2:18Þ
Thus, we complete a step of computation. For stability of the scheme the mesh ratio is restricted by the CFL
condition
k max
j
fjun

j jg < 1; ð2:19Þ
so that waves emanating from xjþ1
2

at tn will not affect the neighboring cell-edges.

Remark 2.1. One may think of computing the numerical energy at tn+1 as the energy cell-average of the v(x,t), i.e.
eU nþ1
j ¼ 1

h

Z x
jþ1

2

x
j�1

2

Uðvðx; tnþ1ÞÞdx: ð2:20Þ
However, computed in such a way eU nþ1
j is different from Unþ1

j and we have from the entropy condition
([9,10])
eU nþ1
j 6 U nþ1

j : ð2:21Þ
Thus, computing U nþ1
j as Eq. (2.20) will not conserve the energy.

Remark 2.2. In practice, the momentum and energy fluxes (2.16) and (2.18) are evaluated approximately
following the procedure described in [7]. That is, we use the mid-point rule as the numerical quadrature to
evaluate the fluxes (2.16) and (2.18)
f̂ n
jþ1

2
’ 1

2
v xjþ1

2
; tnþ1

2

	 
	 
2

ð2:22Þ
and
bF n
jþ1

2
’ 2

3
v xjþ1

2
; tnþ1

2

	 
	 
3

ð2:23Þ
where the predicted values for vðxjþ1
2
; tnþ1

2
Þ are evaluated following the so-called local Cauchy–Kowalevski pro-

cedure. Firstly, we need to compute vðxjþ1
2�0; tnþ1

2
Þ. By the Taylor expansion of vðxjþ1

2�0; tnþ1
2
Þ at ðxj�1

2
; tnÞ and

noting the Eq. (2.5) and the reconstruction (2.10) we have
v xjþ1
2�0; tnþ1

2

	 

¼ v xjþ1

2�0; tn

	 

þ s

2
vt xjþ1

2�0; tn

	 

þOðs2Þ

¼ v xjþ1
2�0; tn

	 

� s

2

1

2
v xjþ1

2�0; tn

	 
	 
2
� �

x

þOðs2Þ

¼ R xjþ1
2�0; un;U n

	 

� s

2
R xjþ1

2�0; un;U n
	 


sn
jþ1

2�
1
2
þOðs2Þ: ð2:24Þ
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Then vðxjþ1
2�0; tnþ1

2
Þ are computed by ignoring the error O(s2) in Eq. (2.24). Once vðxjþ1

2�0; tnþ1
2
Þ are computed,

the predicted value vðxjþ1
2
; tnþ1

2
Þ is obtained by solving the Riemann problem Rieðvðxjþ1

2�0; tnþ1
2
Þ; vðxjþ1

2þ0; tnþ1
2
ÞÞ.

Remark 2.3. Obviously, the designed scheme is an entropy-conservative scheme; however, different from the
entropy-conservative schemes presented in [19], the entropy conservation of our scheme is not as customarily
in the sense that Uðun

j Þ is conserved, but rather in the sense that U n
j is conserved with Un

j related to un
j as in Eqs.

(2.10) and (2.12).
2.4. Numerical scheme for Bs

The momentum equation of the dispersion part, i.e. the first equation in Eq. (2.6), is linear; therefore, it is
easy to see that sliding cell-average of a solution u(x,t)
�uðx; tÞ ¼ 1

h

Z xþh
2

x�h
2

uðn; tÞdx; ð2:25Þ
is also a solution to the equation. So is Uð�uðx; tÞÞ to the energy equation, the second one in Eq. (2.6). Note that
the energy cell-average
Uðuðx; tÞÞ ¼ 1

h

Z xþh
2

x�h
2

u2ðn; tÞdx
is only O(h2) away from Uð�uðx; tÞÞ

Uðuðx; tÞÞ ¼ Uð�uðx; tÞÞ þOðh2Þ; ð2:26Þ
therefore, by noting the differentiability of the error coefficient in Eq. (2.26) with respect to t, we have
Ut þ eð2�u�uxx � ð�uxÞ2Þx ¼ Oðh2Þ: ð2:27Þ

This indicates that the point-value scheme for Eq. (2.6) can also be used to compute its cell-average approx-
imations maintaining the second-order accuracy.

We use the direct difference method in [8, Section 2.2.1] for computing the numerical momentum in Bs. The
scheme for momentum can then be stated as
unþ1
j ¼ un

j � e
k

h2
DþD�u

nþ1
2

jþ1
2

� DþD�u
nþ1

2

j�1
2

	 

; ð2:28Þ
where
unþ1
jþ1

2
¼ 1

2
ðunþ1

jþ1 þ unþ1
j Þ; un

jþ1
2
¼ 1

2
ðun

jþ1 þ un
j Þ;

u
nþ1

2
j ¼ 1

2
ðun

j þ unþ1
j Þ; u

nþ1
2

jþ1
2

¼ 1

2
un

jþ1
2
þ unþ1

jþ1
2

	 

:

ð2:29Þ
The difference operators D- and D+ stand for
D�wr ¼ wr � wr�1 and Dþwr ¼ wrþ1 � wr; ð2:30Þ
respectively, with r being an integer, say j, or a half integer, say jþ 1
2
. The scheme (2.28) is conservative. The

advantage of using this scheme, as stated in [8], is that the time step s does not suffer from a prohibiting
restriction s = O(h3) and the corresponding linear algebra system is still easy to be solve using well developed
numerical methods. Thus, the only stability limit on the time step s in our method is the CFL condition (2.19).

The numerical energy Unþ1
j is computed passively in the scheme from the computed numerical momentum.

To compute it, we discretize ð�uxÞ2 and �u�uxx in Eq. (2.27) as
ð�uxÞ2 ’
1

2
Dþunþ1=2

j�1
2

	 
2

þ D�unþ1=2

j�1
2

	 
2
� �

and �u�uxx ’ unþ1=2

j�1
2

DþD�unþ1=2

j�1
2

; ð2:31Þ
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respectively, and ignore the O(h2) error in Eq. (2.27). The scheme for computing the numerical energy is then
stated as
U nþ1
j ¼ Un

j � 2e
k

h2
u

nþ1
2

jþ1
2

DþD�u
nþ1

2

jþ1
2

	 

� u

nþ1
2

j�1
2

DþD�u
nþ1

2

j�1
2

	 
	 

þ e

k

2h2
Dþ D�u

nþ1
2

jþ1
2

	 
2

þ D�u
nþ1

2

j�1
2

	 
2
� �

� e
k

8h2
DþD�u

nþ1
2

jþ1

	 
2

� DþD�u
nþ1

2
j�1

	 
2
� �

: ð2:32Þ
The term k
8h2 ððDþD�u

nþ1
2

jþ1Þ
2 � ðDþD�u

nþ1
2

j�1Þ
2Þ in Eq. (2.32) is of O(h3) and will not affect the second-order accu-

racy of the scheme, which will be seen in the discussion in Section 4. The importance of this term will be seen in
the proof of the following lemma presented in Appendix. The scheme (2.32) is also conservative.

Lemma 2.1. For scheme (2.28) the following equality holds,
ðunþ1
j Þ

2 ¼ ðun
j Þ

2 � 2e
k

h2
u

nþ1
2

jþ1
2

DþD�u
nþ1

2

jþ1
2

	 

� u

nþ1
2

j�1
2

DþD�u
nþ1

2

j�1
2

	 
	 

þ e

k

2h2
Dþ D�u

nþ1
2

jþ1
2

	 
2

þ D�u
nþ1

2

j�1
2

	 
2
� �

� e
k

8h2
DþD�u

nþ1
2

jþ1

	 
2

� DþD�u
nþ1

2
j�1

	 
2
� �

: ð2:33Þ
Lemma 2.1 indicates that scheme (2.28) is an energy-conserved scheme in the ordinary sense. The proof of
the lemma is presented in Appendix. Subtracting Eq. (2.33) from Eq. (2.32), we arrive
U nþ1
j ¼ ðunþ1

j Þ
2 þ Un

j � ðun
j Þ

2
: ð2:34Þ
Thus, Eq. (2.34), instead of Eq. (2.32), is indeed the scheme practically used to compute the numerical energy.

3. Feasibility of the method and Jensen condition

As we have seen in the previous section, our method involves two entities, the numerical momentum un and
numerical energy Un, and both of them are computed conservatively, see Eqs. (2.15), (2.17), (2.28) and (2.32).
We note that the numerical energy is not computationally passive in the method; it gives feedback to the
solution in solution reconstruction in As. With a given numerical energy the reconstruction slope sn

j is solved
out from Eq. (2.12). However, the first question that should be asked is whether Eq. (2.12) is solvable for sn

j

with a given U n
j ; otherwise, the method is not feasible.

By noting U(u) = u2 and Eq. (2.10) it is not difficult to derive from Eq. (2.12)
ðsn
j Þ

2 ¼
12ðU n

j � ðun
j Þ

2Þ
h2

: ð3:1Þ
Therefore, Eq. (2.12) is solvable and admits two real roots for sn
j provided
U n
j P Uðun

j Þ ¼ ðun
j Þ

2
: ð3:2Þ
Since sn
j is an approximation to ux(xj,tn), it should have the same sign as that of ðun

jþ1 � un
j�1Þ; therefore, it is

computed as
sn
j ¼ sgnðun

jþ1 � un
j�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðU n

j � ðun
j Þ

2Þ
h2

s
: ð3:3Þ
Now it is clear that the solvability of Eq. (2.12) for sn
j and thus the feasibility of the method rely entirely on

whether the inequality (3.2) holds. We call Eq. (3.2) the Jensen condition since when un
j and Un

j are exactly the
momentum and energy cell-averages of a solution (3.2) is just the Jensen’s inequality on the solution in the grid
cell.

Theorem 3.1. Our method maintains the Jensen condition provided the condition holds at the initial time;
therefore the method is feasible.
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Since the method proceeds in a splitting fashion as described in Eq. (2.8) or Eq. (2.9), to prove the theorem
it is suffice to prove that both the schemes for As and Bs maintain the condition, i.e. once the condition holds
at tn it then holds also at tn+1. Let us first investigate As, for which we have the following lemma.

Lemma 3.1. The numerical scheme presented in Section 2.3 for As maintains the Jensen condition.

Proof. Since the Jensen condition holds at tn, Eq. (2.12) is solvable and thus the solution can be reconstructed
as R(x;un,Un) at tn. The IVP (2.13) then evolves with the time to obtain the solution v(x,t) over the time interval
[tn,tn+1], by which unþ1

j and Unþ1
j are evaluated as in Eqs. (2.14)–(2.18). Note that we have
Uðunþ1
j Þ ¼ U

1

h

Z x
jþ1

2

x
j�1

2

vðx; tnþ1Þdx

0@ 1A; ð3:4Þ
from which and the Jensen’s inequality we have
Uðunþ1
j Þ 6 eU nþ1

j ; ð3:5Þ
where eU nþ1
j is defined as in Eq. (2.20). The lemma then follows from Eq. (2.21) in Remark 2.1. h

We then investigate the scheme for Bs, for which we have the following lemma.

Lemma 3.2. The numerical scheme presented in Section 2.4 for Bs maintains the Jensen condition.

Proof. The lemma is an immediate result of Eq. (2.34). h

Proof of Theorem 3.1. The theorem follows by combining the results of Lemmas 3.1 and 3.2 and noting Eqs.
(2.8) and (2.9). h

Theorem 3.2. For our numerical method, (1) the numerical momentum is uniformly L2 bounded, (2) the numerical

energy is nonnegative and (3) the numerical energy is uniformly L1 bounded, provided the initial energy is L
bounded and the Jensen condition holds at the time.

Proof. According to Theorem 3.1, the Jensen condition holds all the times for the numerical solution; there-
fore, statement (2) follows from the condition (3.2) by noting ðun

j Þ
2 P 0. Statement (3) follows from statement

(2) and the conservation of energy; actually, the L1 norm of the energy is a constant. Finally, statement (1)
follows from the statement (3) and the Jensen condition. h

Remark 3.1. We know that when a numerical solution blows up, either its momentum or energy must be out
of control, see [2,16,18,26]. Theorem 4.2 and its proof show that in our method the numerical momentum is L2

controlled by the energy, and the energy itself is nonnegative and L1 bounded, which indicates that the method
is very stable in long-time numerical integration. The numerical examples in Section 5, especially the simula-
tion of Zabusky–Kruskal’s example, illustrate this.

Remark 3.2. Lemma 3.1 and thus Theorem 3.1 hold when the fluxes in As are computed as in Eqs. (2.16) and
(2.18). We do not know yet whether the lemma and thus the theorem are still true if the fluxes are computed
practically as in Remark 2.2. However, our numerical experiments with the fluxes computed as in Remark 2.2
have not yet counted any violation of the Jensen condition. We thus conjecture that the lemma and theorem
are still true even in this case.
4. Residual error analysis and scheme’s accuracy

The truncation error of a numerical method for PDE is customarily defined as the error caused by replacing
the numerical solution in the method with true solution to the PDE, see [9,10,15]. Equivalently, the residual
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error is the error of one step computation with the numerical solution at tn being exact. The difference between
the two errors is a factor of the time step s. Because all the previously described numerical methods involve
two numerical entities, the numerical momentum and numerical energy, the residual errors of our scheme
should thus involve errors in computing the two of them. Moreover, the reconstruction slope sn

j in scheme
As is an approximation to ux(x,t) and we also include the error in computing the slope.

Definition 4.1. The residual errors for the previously described numerical methods are defined as
ðRn;u

j ;Rn;U
j ;Rn;s

j Þ
T with
Rn;u
j

Rn;U
j

" #
¼

�unþ1
j

Unþ1
j

" #
� H s

�un
j

U n
j

" #
ð4:1Þ
and " # !

Rn;s

j ¼ uxðxj; tnþ1Þ � snþ1
j H s

�un
j

U n
j

; ð4:2Þ
where �un
j and U n

j are, respectively, the momentum and energy cell-averages of true solution at (xj,tn), Hs is the
difference operators, As, Bs, [As�Bs] for the Godunov’s splitting and ½As=2 � Bs=2 � Bs=2 � As=2� for the Strang’s
splitting, with As and Bs replaced with the numerical schemes described in Section 2. The slope snþ1

j in Eq. (4.2)
is solved out from Eq. (2.12), i.e. Eq. (3.3), with the computed momentum and energy cell-averages at tn+1.

The inclusion of Rn;s
j in the residual error is important. As will be seen in the following discussion, main-

taining Rn;s
j with certain order guarantees the numerical error in computing (un+2,Un+2)T from (un+1,Un+1)T

being of the same order as that in computing (un+1,Un+1)T from (un,Un)T. Thus, if the numerical error is accu-
mulated in a linear fashion, the convergence of numerical solution then follows.

In the following we are going to study the accuracies of the schemes for As and Bs and the Godunov’s and
the Strang’s splittings of our method. We first have the following theorem for the scheme for As.

Theorem 4.1. The difference scheme described in Section 2.3 for As is second-order accurate away from extremes

of solution in the sense that ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh3Þ and Rn;s

j ¼ OðhÞ. Near extremes of solution the scheme is still at

least first-order accurate in that ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh2Þ:

To prove the theorem we need first to prove the following lemma.

Lemma 4.1. If the numerical momentum un
j and energy Un

j are third-order accurate
un
j ¼ �un

j þOðh3Þ; Un
j ¼ Un

j þOðh3Þ; ð4:3Þ
the reconstruction slope solved from Eq. (2.12) or Eq. (3.3) is first-order accurate
uxðxj; tnÞ ¼ sn
j

un
j

Un
j

" # !
þOðhÞ; ð4:4Þ
away from extremes of solution.

This result was first given and proved in [13] and later also in [12,21]. For the completion of discussion we
provide the proof here.

Proof. We shall first prove the reconstruction slope solved with the true cell-averages are second-order
accurate,
uxðxj; tnÞ ¼ sn
j

�un
j

Un
j

" # !
þOðh2Þ; ð4:5Þ
away from extremes. To this end, we note the Taylor expansion of u(x,t) at (xj,tn),
uðx; tnÞ ¼ uðxj; tnÞ þ uxðxj; tnÞðx� xjÞ þ
1

2
uxxðxj; tnÞðx� xjÞ2 þ

1

6
uxxxðxj; tnÞðx� xjÞ3 þOðh4Þ: ð4:6Þ
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Cell-averaging the two sides of Eq. (4.6) we obtain
uðxj; tnÞ ¼ �un
j �

1

24
h2uxxðxj; tnÞ þOðh4Þ; ð4:7Þ
Now we substitute Eq. (4.7) back into Eq. (4.6) and obtain
uðx; tnÞ ¼ �un
j �

1

24
h2uxxðxj; tnÞ þ kjðx; tnÞ; ð4:8Þ
where
kjðx; tnÞ ¼ uxðxj; tnÞðx� xjÞ þ
1

2
uxxðxj; tnÞðx� xjÞ2 þ

1

6
uxxxðxj; tnÞðx� xjÞ3 þOðh4Þ: ð4:9Þ
We note
Un
j ¼

1

h

Z xjþ1=2

xj�1=2

Uðuðx; tnÞÞdx ¼ 1

h

Z xjþ1=2

xj�1=2

ðuðx; tnÞÞ2dx: ð4:10Þ
Substituting Eq. (4.8) into Eq. (4.10), we have
Un
j ¼

1

h

Z x
jþ1

2

x
j�1

2

u2ðxÞdx ¼ Uð�ujÞ þ
h2

12
ðu0ðxjÞÞ2 þOðh4Þ; ð4:11Þ
Substituting Eq. (4.11) into Eq. (3.3), we arrive
sn
j

�un
j

Un
j

" # !
¼ sgnð�un

jþ1 � �un
j�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxðxj; tnÞÞ2 þOðh2Þ

q
: ð4:12Þ
Thus, Eq. (4.5) follows easily from Eq. (4.12).
Now if the numerical momentum and energy are third-order accurate as in Eq. (4.3), by following the same

argument, we arrive
sn
j

un
j

Un
j

" # !
¼ sgnðun

jþ1 � un
j�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxðxj; tnÞÞ2 þOðhÞ

q
: ð4:13Þ
Thus, the lemma follows easily from Eq. (4.13). h

Proof of Theorem 4.1. We start with the reconstruction step in As. According to Eq. (4.12), the reconstruction
solution (2.10) is second-order accurate. The evolution step does not cause any error; therefore, the numerical
fluxes (2.16) and (2.18) are also second-order accurate, i.e.
f̂ n
jþ1=2 ¼

1

s

Z tnþ1

tn

1

2
ðuðxjþ1=2; tÞÞ2dt þ dn

f ðxjþ1=2Þh2 þOðh3Þ ð4:14Þ
and
bF n
jþ1=2 ¼

1

s

Z tnþ1

tn

2

3
ðuðxjþ1=2; tÞÞ3dt þ dn

F ðxjþ1=2Þh2 þOðh3Þ ð4:15Þ
where dn
f ðxÞ and dn

F ðxÞ are Lipschitz continuous with respect to x. Thus, the result ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh3Þ follows

easily from Eqs. (2.15) and (2.17). Then the result Rn;s
j ¼ OðhÞ away from extremes follows from Lemma 4.1.

Thus, the proof is complete. h

Remark 4.1. It is seen from the above proof that the numerical solution at tn+1 computed from the exact
momentum and energy cell-averages at tn,
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unþ1
j

Unþ1
j

" #
¼ H s

�un
j

Un
j

" #
; ð4:16Þ
is third-order accurate everywhere, even near extremes of solution. This is because of Eq. (4.5), the reconstruc-
tion slope sn

j solved from �un
j and Un

j is at least first-order accurate, which makes the reconstruction solution is
second-order accurate even near extremes. However, the computation from tn+1 to tn+2 will not be that lucky.
Because of the third-order error of the numerical solution at tn+1, snþ1

j will lose some order of accuracy near
extremes, so does the reconstruction solution there at tn+1. In this time step, the first-order accurate slope snþ1

j

away from extremes maintains the numerical solution at tn+2,
unþ2
j

Unþ2
j

" #
¼ ½H s � H s�

�un
j

Un
j

" #
; ð4:17Þ
to be third-order accurate away from extremes. However, near extremes the numerical solution may be less
accurate; nevertheless it will still be at least second-order accurate. This is why Rn;s

j , the numerical error in com-
puting the slope, should be included in the residual error.

Remark 4.2. Theorem 4.1 still holds even when the numerical fluxes are approximately evaluated as in Eqs.
(2.22) and (2.23).

Theorem 4.2. The difference scheme described in Section 2.4 for Bs is second-order accurate in the sense that

ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh3Þ and Rn;s

j ¼ OðhÞ.

Proof. Scheme (2.28) is obviously second-order accurate. By noting that the approximations in Eq. (2.31) are
all second-order accurate, scheme (2.32) is also second-order accurate, so is the scheme (2.34) then. We thus
have ðRn;u

j ;Rn;U
j Þ

T ¼ Oðh3Þ. The result Rn;s
j ¼ OðhÞ follows from Lemma 4.1. h

Theorem 4.3. The Godunov’s splitting of our method is first-order accurate in the sense that ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh2Þ

and the Strang’s splitting of our method is second-order accurate in the sense that ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh3Þ and

Rn;s
j ¼ OðhÞ away from extremes of solution and is at least first-order accurate near extremes of solution in that

ðRn;u
j ;Rn;U

j Þ
T ¼ Oðh2Þ.

Proof. The theorem follows easily from the same arguments as in [17] and Lemma 4.1. h
5. Numerical experiments

In this section, we are going to present several numerical examples computed by the Strang’s splitting ver-
sion (2.9) of our method to show the efficiency of the method. We will give particular emphasis on the stability
and structure-preserving feature of our method in long-time numerical integrations, especially in the ‘‘convec-
tion-dominated’’ cases. In all the examples, we use blue solid lines to represent numerical solutions and use red
dot–dash lines to represent exact solutions.1

We start with the normal case,
ut þ
1

2
u2

� �
x

þ uxxx ¼ 0; ð5:1Þ
where the dispersion coefficient in Eq. (1.1) is taken to be e = 1.

Example 5.1. Consider the one-soliton solution to Eq. (5.1)

2
uðx; tÞ ¼ A sech ðjx� xt � x0Þ; ð5:2Þ
r interpretation of color in Figs. 2–12, the reader is referred to the web version of this article.
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where
Table
Examp

N

100
200
400
800

1600

Table
Examp

N

100
200
400
800

1600
A ¼ 12j2; x ¼ 4j3; ð5:3Þ

and x0 is an arbitrary constant. We take j = 0.3 and x0 = 0 and take u(x,0) as the initial condition.

Firstly, we use this solution to check the accuracy and convergence rate of the method. The solution region
is taken to be (�10,10). To make the numerical simulation accurate we provide the boundary conditions at
x = ±10 with the exact solution. The mesh ration k ¼ s

h is taken to be 0.5. We perform the computation on
the grids of 100, 200, 400, 800 and 1600 cells, respectively, up to t = 10 and the L1, L2 and L1 errors and
the corresponding convergence rates of the momentum and energy are presented in Tables 1 and 2. We can
clearly see from the tables that our method is second-order accurate. According to the discussion in Section
4, the accuracy of the method degenerates at the extreme of the solution and will be less than second-order
there. However, the L1 errors and the corresponding convergence rate indicate that the accuracy degeneration
at the extreme is very mild.

Secondly, we use this solution to test the stability and structure-preserving feature of the method in long-
time integration. To this end, we still take the solution region to be (�10,10), however, with periodic boundary
conditions at the two ends. Note that the soliton has an advection speed of 0.36; therefore, if the periodic
boundary conditions have little effect on the soliton, which decays rapidly approaching the two ends, we
expect the solution assumes the initial value after a period of 500/9 . 55.5. We thus use this observation to
make comparison between the numerical solution and the ‘‘nearly’’ exact solution, the initial value, at times
of certain periods. We will use this observation also in some of the following examples to make comparisons
between numerical and exact solutions.

We conduct the simulation on a grid of 100 cells (h = 0.2), up to 55.5 (one periods), 555.5 (10 periods)
and 5555.5 (100 periods) and the numerical results are displayed in Fig. 2. We see from the Fig. 2 that
the method is very stable in long-time simulation; the soliton is quite smooth with well-preserved shape
even after 100 periods of movement. We note that the phase error becomes severe at longer times, which
we believe is mainly caused by the computation of the dispersion part, in which U(u) is passively
computed.

Example 5.2. We consider the two-soliton solution to Eq. (5.1)
uðx; tÞ ¼ 12
j2

1eh1 þ j2
2eh2 þ 2ðj2 � j1Þ2eh1þh2 þ a2ðj2

2eh1 þ j2
1eh2Þeh1þh2

ð1þ eh1 þ eh2 þ a2eh1þh2Þ2
ð5:4Þ
2
le 5.1, numerical errors and convergence rates of energy U(u) = u2 at t = 10

h L1 Order L2 Order L1 Order

0.2 7.131E�003 – 1.215E�003 – 3.074E�002 –
0.1 1.783E�003 2.000 3.020E�003 2.008 7.637E�003 2.009
0.05 4.436E�004 2.007 7.540E�004 2.002 1.909E�003 2.000
0.025 1.102E�004 2.009 1.882E�004 2.002 4.768E�004 2.001
0.0125 2.698E�005 2.030 4.631E�005 2.023 1.178E�004 2.017

1
le 5.1, numerical errors and convergence rates of momentum u at t = 10

h L1 Order L2 Order L1 Order

0.2 4.606E�003 – 9.249E�003 – 3.240E�002 –
0.1 1.151E�003 2.001 2.304E�003 2.005 8.050E�003 2.009
0.05 2.880E�004 1.999 5.754E�004 2.002 2.006E�003 2.005
0.025 7.179E�005 2.004 1.435E�004 2.004 4.996E�004 2.005
0.0125 1.768E�005 2.022 3.563E�005 2.010 1.241E�004 2.009
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(a) Initial valueat t = 0 (b) Numerical solution at t = 55.5, 1 period
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Fig. 2. Numerical Example 5.1, solution plots at different times.

390 Y. Cui, D.-k. Mao / Journal of Computational Physics 227 (2007) 376–399
where
j1 ¼ 0:4; j2 ¼ 0:6; a2 ¼ j1 � j2

j1 þ j2

� �2

¼ 1

25
; ð5:5Þ

h1 ¼ j1x� j3
1t þ x1; h2 ¼ j2x� j3

2t þ x2; ð5:6Þ
x1 ¼ 4; x2 ¼ 15: ð5:7Þ
To conduct the numerical simulation, we take the solution region to be (�40,40) with periodic boundary con-
ditions at the two ends. We take u(x,0) as the initial value. The grid is taken to be of 200 cells (Dx = 0.4) with
the mesh ratio k ¼ Dt

Dx ¼ 0:5. The computation is implemented up to t = 40 and 4000, and the plots of the
numerical solution at the times are displayed in Fig. 3. We compare the numerical solution at t = 40 with
the exact solution by ignoring the boundary boundary effects and see that the numerical solution agrees quite
well with the exact one.

We note there are very weak oscillations in the numerical solution, which occur near the boundaries at the
very beginning, remain in the solution and travel and interact with the solitons all the time. Because the
periodic boundary conditions are implemented at the two ends, the exact solution to the problem involves a
very weak discontinuity there at the beginning, which we believe is the cause of the weak oscillations. Methods
with numerical viscosities (energy then diminishes), such as the one in [23,24], will immediately smoothen out
the discontinuity. However, our method, preserving the conservations of momentum and energy, is sensitive to
this discontinuity. Nevertheless, they are well controlled by the stability property of the method. The
sensitiveness of the method to this kind of discontinuities will also be observed in the following examples,
especially in the ‘‘convection-dominated’’ cases. However, no oscillations of this kind are observed in the
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Fig. 3. Numerical Example 5.2, solution plots at different times.
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Zabusky–Kruskal’s example since the periodic boundary conditions in that example do not produce
discontinuity.

Now we are going to consider the ‘‘convection-dominated’’ cases. The following two numerical examples
were used in [8] to test the performances of many numerical methods for the KdV equations. We here also use
these two examples to test our numerical method, and we will emphasize on long-time integrations.

Example 5.3. We consider the KdV equation (1.1) with e = 0.0013020833 and with the initial value of the one-
soliton solution
uðx; tÞ ¼ 3c sech2

ffiffiffiffiffi
c
4e

r
ðx� ctÞ

� �
; ð5:8Þ
where
c ¼ 1=3: ð5:9Þ

The solution region is taken to be (�1,2) with periodic boundary conditions at the two ends. The solution to
this problem has an advection speed of 1/3. We perform the computation on a grid of 256 (h=3/256) cells, with
the mesh ratio k ¼ s

h ¼ 0:5, up to t = 2 (1 period) and 90 (10 periods), and the plots at the times are displayed
in Fig. 4. As in [8], we compare the numerical solution to the exact solution by ignoring the boundary effects.
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Fig. 4. Numerical Example 5.3, solution plots at different times, 256 points.
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As is seen in the figure, the shape of the soliton is well preserved, and the numerical solution agrees quite
well with the exact solution at t = 2. However, there is a big phase error between the two at the later time
t = 90. The computations of this example in [8] were implemented on the grid of 64 cells. We did this with our
method but the numerical result is not satisfied. Small wiggles occur in the numerical solution and thus pollute
the soliton. The numerical result on the grid of 128 is OK; however, the wiggles introduced by the boundary
condition become visible. It may be a shortcoming of our method that it needs more grid cells to resolve sharp
soliton profiles.

Example 5.4. Consider again the KdV equation (1.1) with e = 0.0013020833, however, with the initial value of
the two-soliton waves
uðx; tÞ ¼ 2
j2

1eh1 þ j2
2eh2 þ 2ðj2 � j1Þ2eh1þh2 þ a2ðj2

2eh1 þ j2
1eh2Þeh1þh2

ð1þ eh1 þ eh2 þ a2eh1þh2Þ2
ð5:10Þ
where
j1 ¼ 1; j2 ¼ 1:5; a2 ¼ j1 � j2

j1 þ j2

� �2

¼ 1

25
; ð5:11Þ

h1 ¼ j1

xffiffiffiffiffi
6e
p � j3

1

t

63=2 ffiffi
e
p � 3; ð5:12Þ
and
h2 ¼ j2

xffiffiffiffiffi
6e
p � j3

2

t

63=2 ffiffi
e
p þ 3: ð5:13Þ
The solution region is taken to be (�1,2) with periodic boundary conditions at the two ends. The mesh ratio is
taken to be k ¼ s

h ¼ 0:5 and the computation is carried out again on grids of 256 cells up to the time t = 4 and
90, and the plots of the solution are displayed in Fig. 5. We compare the numerical solutions at t = 4 with the
exact solution by ignoring the boundary effects.

Now we come to the main show of our numerical experiments, the Zabusky–Kruskal’s problem.

Example 5.5. The dispersion coefficient e in Eq. (1.1) is now 0.0222 and the initial value is
uðx; 0Þ ¼ cosðpxÞ ð5:14Þ

with periodic boundary conditions at the two ends. The solution starts with a cosine wave and later on devel-
ops a train of 8 solitons which travel at different speeds and interact with each other, see [25] for detailed
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 Numerical solution at t = 4  Numerical solution at t = 90

Fig. 5. Numerical Example 5.4, solution plots at different times, 256 points.
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description of the solution. There are several critical moments in the development of the solution: (1)
t ¼ tB ¼ 1

p when the solution is about to breakdown, (2) t = 3.6tB when a train of 8 solitons have been devel-
oped, (3) t = 0.5tR = 0.5 · 30.4tB when all the odd-numbered solitons overlap at x = 0.385 and all the even-
numbered overlap at x = 1.385, and (4) t = tR = 30.4tB, the recurrence time, when all the solitons arrive in
almost the same phase to reconstruct the initial state.
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(a) Numerical solutionon grid of 400 cells. (b) Numerical solution on grid of 800 cells.

Fig. 6. Numerical Example 5.5, solution plots at t = 0, t ¼ tB ¼ 1
p and t = 3.6tB.
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(a) Numerical solution at t = 0.5tR, 400 cells. (b) Numerical solution at t = tR, 400 cells.
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(c) Numerical solution at t = 0.5tR, 800 cells. (d) Numerical solution at t = tR, 800 cells.

Fig. 7. Numerical Example 5.5, solution plots at t = 0.5tR and t = tR.
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We perform our computation on grids of 400 and 800 cells, respectively, with the mesh ratio k ¼ s
h ¼ 1

p as in
[26]. We first carry out the computation to the time t = tB and t = 3.6tB and display the initial values and the
numerical solution at the two times in Fig. 6. The two pictures in the figure have almost no difference with each
other, and all of them agree quite well with the numerical results obtained by the Zabusky–Kruskal scheme,
see [25], as well as the other numerical schemes, see [2,26] and [18]. This verifies the integrity of our method.
We also note that there is no boundary wiggles in the numerical solution.

We then carry out the computation to the time t = 0.5tR and t = tR, respectively, and the results are dis-
played in Fig. 7. At the recurrence time, the initial value is not well reconstructed but with oscillations.
Our colleagues Deng Zhenguo and Ma Heping used their symplectic spectral method, a method with spectral
discretization in space and symplectic discretization in time and with its semi-discretization satisfying three
conservation relations, see [5,6], to compute the same solution at t = tR, and got exactly the same results.
We also note that the numerical results obtained by other methods, such as the split–step expansion schemes
in [16] and the method in [18], are very similar to ours (the only exception we found is the result obtained by
the Chan–Kerkhoven’s method, [16]).

Most people blamed the ‘‘over-dispersion’’ features of their methods used for the simulation; however, it is
hard to believe that numerical methods constructed on different philosophies and mechanism obtain numerical
solutions of the same wrong. We thus conjecture that there is something missing between the KdV equation
and the physical experiment conducted in laboratories, say, in Los Alamos, [25]. A numerical investigation on
this matter is being carried out and we wish to report our result in due time.
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(a) Numerical solution at t = 2tR. (b) Numerical solution at t = 5tR.
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(c) Numerical solution at t = 10tR. (d) Numerical solution at t = 20tR.
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Fig. 8. Numerical Example 5.5, solution plots at t = 2tR, t = 5tR, t = 10tR and t = 20tR, 400 cells.
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Fig. 9. Numerical Example 5.5, solution plots at t = 2tR, t = 5tR, t = 10tR and t = 20tR, 800 cells.
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Fig. 10. Numerical Example 5.5, interactions of solitons in times (0, tR) and (19tR,20tR), 800 cells.
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Finally, we carry out our computation to the times t = tR, t = 5tR, t = 10tR and t = 20tR, and the numerical
results on the 400-grid and 800-grid are displayed in Figs. 8 and 9, respectively. It is seen that the numerical
solutions are very smooth and stable with well-preserved shapes for all the solitons. It seems to us that the
computation can go on for ever without blowup. No boundary wiggles are observed in the solution. There
are phase differences between the solutions on the coarse and fine grids, and we believe that the solution
on the fine grid is more reliable. To show the interactions of solitons in the solution we display the (x, t)-con-
tours of the 800-solution in the time intervals (0, tR) and (19tR,20tR) in Fig. 10. It is seen from the figures that
there is no smearing of the solitons even at the later times.

Our scheme does not conserve the third conservation quantity u3 � 3e(ux)2; however, we would like to see
how well the total amount of this quantity is conserved in the computation. We thus check the conservation
error of this quantity at different times and the results are displayed in Table 3. In the table, the conservation
error is defined as
Table
Examp

Time

Error
Error ¼
X

j

Z xjþ1=2

xj�1=2

fR3ðx; un;UnÞ � 3eðsn
j Þ

2gdx�
Z 2

0

fu3ðx; 0Þ � 3eðuxðx; 0ÞÞ2gdx; ð5:15Þ
3
le 5.5, conservation errors of the third conservation quantity at different times

tB 3.6tB 1tR 2tR 5tR 10tR 20tR

4.55E�003 1.23E�001 3.99E�003 4.54E�002 4.79E�002 �6.97E�003 2.45E�002

—1 —0.5 0 0.5 1
—1

—0.5

0

0.5

1

1.5

2

2.5

3

—1 —0.5 0 0.5 1
—1

—0.5

0

0.5

1

1.5

2

2.5

(a) Numerical solution at t = 1. (b) Numerical solution at t = 2.
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(c) Numerical solution at t = 3. (d) Numerical solution at t = 4.5

Fig. 11. Numerical Example 5.6, solution plots at t = 1, t = 2, t = 3 and t = 4.5, 200 cells.
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Fig. 12. Numerical Example 5.6, solution plots at t = 100 and t = 200, 200 cells.

Y. Cui, D.-k. Mao / Journal of Computational Physics 227 (2007) 376–399 397
where R(x;un,Un) is the reconstructed solution in the cells and sn
j ’s are the slopes of the reconstructed solu-

tion. We see from the table that the third quantity is globally well conserved with an error of conservation
varying between 10�2 and 10�3. This may reflect the fact that all the solitons travel with well-preserved
shapes in the numerical solution and thus the principle part of the numerical error of the solution is the
phase error.

The last example is the one used in the numerical tests of [1].

Example 5.6. Consider the following generalized KdV equation
ut þ
3

8
u2 þ 1

10
u

� �
x

þ 2

3
� 10�3uxxx ¼ 0; ð5:16Þ
with the initial value
uðx; 0Þ ¼ cosðpxÞ; �1 < x < 1; ð5:17Þ

and periodic boundary conditions at x = ±1. We perform our computation on a grid of 200 cells (h = 0.01) up
to the times t = 1, 2, 3 and 4.5 and the numerical results are displayed in Fig. 11. The results agree quite well
with the ones displayed in [1]. We then carry out the computation up to the time t = 100 and 200 and the numer-
ical results are displayed in Fig. 12. We see that although at these longer times, the solitons still have well-pre-
served shapes. It seems that the computation can go on for ever with the shapes of the solitons well preserved.
6. Conclusion

We construct a finite-volume method for the KdV equation which conserves both the momentum and
energy. The main ingredient of the method is a numerical device that enables us to construct numerical schemes
for a PDE that also simulate related equations. Splitting approach is employed in the construction of the
method. We prove that the method is stable and second-order accurate in certain sense. Numerical experiments
show that the method has a very good stability property and suits for long-time integrations of ‘‘convection-
dominated’’ KdV equations. Phase errors in long-time integration may still be a flaw of the method. We believe
that a way to ease the phase errors is to construct schemes that preserve more conservation relations.
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Appendix.

Proof of Lemma 2.1. Multiplying Eq. (2.28) by 2u
nþ1

2
j we obtain
ðunþ1
j Þ

2 ¼ ðun
j Þ

2 � 2e
k

h2
u

nþ1
2

j DþD�u
nþ1

2

jþ1
2

� DþD�u
nþ1

2

j�1
2

	 

: ðA:1Þ
Subtracting Eq. (A.1) from Eq. (2.33) we obtain
�2u
nþ1

2

jþ1
2

þ 2u
nþ1

2
j þ 1

2
Dþu

nþ1
2

jþ1
2

þ 1

2
D�u

nþ1
2

jþ1
2

� �
DþD�u

nþ1
2

jþ1
2

þ 2u
nþ1

2

j�1
2

þ 2u
nþ1

2
j � 1

2
Dþu

nþ1
2

j�1
2

þ 1

2
D�u

nþ1
2

j�1
2

� �
DþD�u

nþ1
2

j�1
2

� 1

8
DþD�u

nþ1
2

jþ1

	 
2

� DþD�u
nþ1

2
j�1

	 
2
� �

¼ 0: ðA:2Þ
In the derivation of Eq. (A.2) we have used the relations
Dþ D�u
nþ1

2

j�1
2

	 
2

¼ Dþu
nþ1

2

j�1
2

þ D�u
nþ1

2

j�1
2

	 

DþD�u

nþ1
2

j�1
2

: ðA:3Þ
Thus, we need to prove Eq. (A.2), and to this end we note
�2u
nþ1

2

jþ1
2

þ 2u
nþ1

2
j þ 1

2
Dþu

nþ1
2

jþ1
2

þ 1

2
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2
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2
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2

j

	 

; ðA:4Þ
and
2u
nþ1

2

j�1
2

þ 2u
nþ1
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j � 1
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Dþu

nþ1
2

j�1
2

þ 1

2
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nþ1
2

j�1
2
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; ðA:5Þ
by which we deduce
LHS of Eq:ðA:2Þ ¼ 1
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Note
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DþD�u
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2

j þ DþD�u
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2
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; ðA:8Þ
equality (A.2) then follows immediately. Thus, the proof is complete. h

Remark A.1. As is seen in the above proof, the term DþD�u
nþ1

2
jþ1

	 
2

� DþD�u
nþ1

2
j�1

	 
2

helps to make the LHS of
(A.2) zero.
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